
1

CS6270: Virtual Machines

Samarjit Chakraborty

Lecture 2: Background
Review of Basic Computer Architecture Concepts

2

Last Week’s Class: VM Taxonomy

Multi
programmed

Systems

HLL VMs
Co-Designed

VMs

same ISA different
ISA

Process VMs System VMs

Whole
System VMs

different
ISA

same ISA

Classic
OS VMs

Dynamic
Binary

Optimizers

Dynamic
Translators

Hosted
VMs

support an ABI
(user instr. + sys. calls)

support complete ISA

3

Today: Review of Background Material

Virtual machines essentially present an interface that is
identical to some desired real machine

Hence, it is important to understand the interfaces that real
machines provide and how such interfaces are
supported/implemented

In particular, we will review concepts from
Computer architecture (today’s class)
Operating systems

4

Computer System Hardware – Major Components

Memory
Controller

Processor
Interface

ControllerController Expansion Frame
Buffer

CD ROM Floppy

Local Bus

High-Speed I/O Bus

Low-Speed I/O Bus

Network
Hard Drive Display

Interface

5

Basics of Processors

We will use the MIPS instruction set to illustrate the basic
concepts

This instruction set is used by NEC, Nintendo, Silicon Graphics, Sony,
…

MIPS fields

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op: Operation of the instruction (opcode)
rs: First register source operand
rt: Second register source operand
rd: Register destination operand
shamt: Shift amount
funct: Function field (selects specific variant of opcode)

6

MIPS Operands: Registers and Memory

Name Examples Comments
32 registers $s0-$s7, $t0-$t9, $zero, $a0-

$a3, $v0-$v1, $gp, $fp, $sp,
$ra, $at

Fast locations for data. In MIPS, data
must be in registers to perform
arithmetic.

230 memory
words

Mem[0], Mem[4], …,
Mem[4294967292].

Accessed only by data transfer
instructions. MIPS uses byte addresses,
so sequential words differ by 4.
Memory holds data structures, such as
arrays, and spilled registers, such as
those saved on procedure calls.

MIPS operands

7

MIPS: Addressing Modes

op rs rt rd

register

Register (direct)

op rs rt immedImmediate

Displacement op rs rt immed

register

Memory

+

PC-relative op rs rt immed

PC

Memory

+

8

MIPS: Instruction Format

Fixed-length instruction format
All instructions are 32-bit long
Very structured
Only three instruction formats: R, I, J

R-format
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op rs rt rd shamt funct

I-format op rs rt 16-bit immed/address

J-format op 26-bit address

9

MIPS: Instruction Format (Contd.)

R-format: Used for instructions with 3 register operands
Arithmetic instructions:

add $t0, $s1, $s2 # $t0 $s1 + $s2
Note that $t0 is register 8, $s1 is register 17 and $s2 is register 18.

R-format
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op rs rt rd shamt funct

01000 00000 100000000000 10001 10010

10

MIPS: Instruction Format (Contd.)

I-format: For data transfer instructions
Examples: load word (lw) and store word (sw)

One register operand and one memory address operand (specified
by a constant and a register)

lw $t0, 40($s2) # load Mem[$s2+40] to $t0
$t0 is register 8 and $s2 is register 18.

I-format

0000000000101000100011 10010 01000

6 bits 5 bits 5 bits 16 bits
op rs rt 16-bit immed/address

11

J-format: For jump instructions
j Label # next instr. at Label

Formats:

Jump instructions just use high-order bits of PC
Address = bits 31-28 of PC + shift_left_2_bits(26-bit address)
Address boundaries of 256 MB.

J-format op 26-bit address

MIPS: Instruction Format (Contd.)

12

Execution Time of a Program - Factors

Instruction Count
Determined by compiler and ISA

Clock cycle time
Determined by the architecture/implementation of the ISA

Number of Clock Cycles per Instruction (CPI)
Determined by the architecture/implementation of the ISA

We will now look at different possible implementation
possibilities

13

Implementation of the MIPS ISA
Simplified to contain only:

memory-reference instructions: lw, sw
arithmetic-logical instructions: add, sub, and, or, slt
control flow instructions: beq, j

Generic Implementation:
use the program counter (PC) to supply instruction address
get the instruction from memory
read registers
use the instruction to decide exactly what to do

All instructions use the ALU after reading the registers
Why?

memory-reference?
arithmetic?
control flow?

The Processor: Datapath & Control

14

Building Blocks

Different functional units we need for each instruction

PC

Instruction
memory

Instruction
address

Instruction

a. Instruction memory b. Programcounter

Add Sum

c. Adder

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address

15

Incrementing the Program Counter (PC)

PC

Instruction
memory

Read
address

Instruction

4

Add

Fetching instructions and incrementing the PC

16

Datapath for R-type Instructions

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits
R-type

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3

17

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU
Zero

RegWrite

ALU operation3

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits
R-type

rs

rt

rd

Datapath for R-type Instructions (Contd.)

18

Datapath for Load/Store Instructions

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

19

Datapath for Load Instructions

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

rs

rt

immediate

20

Datapath for Store Instructions

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

rs

rt

immediate

21

Datapath for Branch Instructions

The ALU is used to evaluate the branch condition and a separate adder
is used to compute the branch target address as the sum of the
incremented PC and the sign-extended lower 16 bits of the instruction
shifted left by 2 bits

16 32
Sign

extend

ZeroALU

Sum

Shift
left 2

To branch
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation
3

22

Memory & R-type Instructions: Combined Datapath

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU
Zero

RegWrite

ALU operation3
Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

R-type
Memory

23

Using the Multiplexor

24

Adding “Instruction Fetch”

The Instruction Fetch portion of the datapath has now been
added to the previous datapath

PC

Instruction
memory

Read
address

Instruction

16 32

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address

Write
data

Read
data M

u
x

4

Add

M
u
x

ALU

RegWrite

ALU operation3

MemRead

MemWrite

ALUSrc
MemtoReg

25

Simple Datapath for the MIPS Architecture
Finally, adding the datapath for branch instructions

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc

MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add

26

All of the logic is combinational

Wait for everything to settle down, and the right thing to
be done

ALU might not produce “right answer” right away

Use write signals along with clock to determine when
to write

Cycle time determined by length of the longest path

Simple Control Structure

Clock cycle

State
element

1
Combinational logic

State
element

2

27

Control: Two-level implementation
in

st
ru

ct
io

n
re

gi
st

er ALUop

ALUcontrol

O
pc

od
e

Fu
nc

t.

31

26

0

5

bit

Control 1

Control 2

ALU

00: lw, sw
01: beq
10: add, sub, and, or, slt

000: and
001: or
010: add
110: sub
111: set on less than

6

6

2

3

28

Designing Control 1
in

st
ru

ct
io

n
re

gi
st

er ALUop

ALUcontrol

O
pc

od
e

Fu
nc

t.

31

26

0

5

bit

Control 1

Control 2

ALU

00: lw, sw
01: beq
10: add, sub, and, or, slt

000: and
001: or
010: add
110: sub
111: set on less than

6

6

2

3

Assume that Control 2 generates the 2-bit
ALUop based on the opcode. Now, using this
2-bit ALUop and the function field of the
instruction, Control 1 generates the 3-bit
control signal ALUcontrol.

ALUcontrol will determine the function
that the ALU will perform (ADD, OR, etc.)

29

Deriving Control2 signals

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

9 control (output) signals

Determine these control signals directly from the opcodes:
R-format: 0
lw: 35
sw: 43
beq: 4

Input

30

For each opcode, find the values of the control signals
Construct the truth table
Determine the logic that implements this truth table

Similarly for the Other Instructions

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

31

Where we are headed?
Single Cycle Problems:

what if we had a more complicated instruction like floating point?
wasteful of area: NO Sharing of Hardware resources

One Solution:
use a “smaller” cycle time
have different instructions take different numbers of cycles
a “multicycle” datapath:

PC

Memory

Address

Instruction
or data

Data

Instruction
register

Registers
Register #

Data

Register #

Register #

ALU

Memory
data

register

A

B

ALUOut

IR

MDR

32

Why single cycle implementation is not used?

Assume the following access times: Memory (2ns), ALU &
adders (2ns), reg. file access (1ns)
Fixed length clock: longest instruction is the ‘lw’ which
requires 8 ns

Load uses five functional units: instruction memory,
register file, ALU, data memory, register file once again
Hence, clock cycle is 8ns

Clock cycle is determined by the longest path in the machine
(lw in this case)
However, several other instructions could fit into a shorter
clock cycle

33

Why single cycle implementation is not used?

R-type: Instruction fetch, Reg access, ALU, Reg access
Load: Instruction fetch, Reg access, ALU, Mem access, Reg
access
Store: Instruction fetch, Reg access, ALU, Mem access
Branch: Instruction fetch, Reg access, ALU
Jump: Instruction fetch

Note the difference between Load and Jump. This difference
becomes even more significant of there are floating-point instructions.

34

Multicycle implementation: Basics

In the previous slide, the execution of each instruction was
broken into several steps
In a multicycle implementation, each such step executes in
1 clock cycle
Hence, different instructions require different number of
clock cycles
Advantages:

More efficient
A functional unit can be used more than once per
instruction, as long as it is used in different clock cycles
(so less hardware is required)

But the design is more complex

35

Single-Cycle versus Multicycle
In a multicycle
architecture:
Single memory unit for both
instruction and data
Single ALU, rather than one
ALU and two adders
One or more registers added
after each functional unit to
hold the output of that unit,
until the value is used in the
next clock cycle

PC

Memory

Address

Instruction
or data

Data

Instruction
register

Registers
Register #

Data

Register #

Register #

ALU
Memory
data

register

A

B

ALUOut

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALUresult

M
ux

Registers

Write
register
Write
data

Read
data1

Read
data2

Read
register 1
Read
register 2

Shift
left 2

4

Mu
x

ALUoperation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc
MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data Mu

x

Sign
extend

Add

Multicycle architecture

Single cycle architecture

36

Multicycle implementation: Additional Registers

Instruction Register, Memory Data Register, Registers A
and B in front of the Reg file and ALUOut (reg in front of
the ALU)
At the end of each clock cycle, the data to be used in
subsequent clock cycles is stored in a state element

data to be used in subsequent instructions in a later
clock cycle is stored in a programmer-visible state
element like reg file, PC or memory
data used by the same instruction in a later cycle is
stored in one of the additional registers

37

Multicycle implementation

Each clock cycle can accommodate at most one of the
following operations:

a memory access
a register file access (two reads or one write)
an ALU operation

Hence, any data produced by one of the above three
functional units must be saved into a temporary register for
use in a later cycle

38

Multicycle implementation: Additional Registers

P C

M em ory

Addre ss

Ins truction
or data

Data

Ins truc tion

registe r

Re gisters

Reg is ter #

Data

Reg is ter #

Reg is ter #

ALU

M emory

data

register

A

B

ALUOut

All registers except the Instruction register (IR) hold data only between
a pair of adjacent clock cycles (and hence do not need a write control signal)

39

Multicycle implementation: Examples

ALU used to compute PC = PC + 4

Shift
left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3
2

M
u
x

ALU
result

ALU
Zero

Memory
data

register

Instruction
[15– 11]

A

B

ALUOut

0

1

Address

The same ALU is also used for R-type instructions, branch address
computation, computing memory address in the case of lw/sw instructions

40

Break up the instructions into steps, each step takes a cycle
balance the amount of work to be done
restrict each cycle to use only one major functional unit

At the end of a cycle
store values for use in later cycles (easiest thing to do)
introduce additional “internal” registers

Notice: we distinguish
processor state: programmer visible registers
internal state: programmer invisible registers (like IR,
MDR, A, B, and ALUout)

Multicycle Approach: Summary

41

Multicycle implementation: Steps

Instruction fetch
Instruction decode and register fetch
Execution, memory address computation or branch
completion
Memory access or R-type instruction completion
Memory read completion

common for
all instructions

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

42

Use PC to get instruction and put it in the Instruction Register
Increment the PC by 4 and put the result back in the PC
Can be described succinctly using RTL "Register-Transfer
Language"

IR = Memory[PC];
PC = PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1: Instruction Fetch

This step is common for all instructions (obviously!)

43

Read registers rs and rt in case we need them
Compute the branch address in case the instruction is a branch
Previous two actions are done optimistically (no harm is done)
RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC+(sign-extend(IR[15-0])<< 2);

We aren't setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)

Step 2: Instruction Decode and Register Fetch

This step is also common for all instructions

44

ALU is performing one of four functions, based on instruction type

Memory Reference:
ALUOut = A + sign-extend(IR[15-0]);

R-type:
ALUOut = A op B;

Branch:
if (A==B) PC = ALUOut;

Jump:

PC = PC[31-28] || (IR[25-0]<<2)

Step 3 (instruction dependent)

45

Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;

R-type instructions finish

Reg[IR[15-11]] = ALUOut;

Step 4 (R-type or memory-access)

46

Memory read completion step

Reg[IR[20-16]]= MDR;

Step 5: Write-back step

47

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Steps taken to execute any instruction class

Summary of execution steps

48

Multicycle Control Unit

We now need to determine the values of the control signals
for each of the Steps 1 – 5
The next few slides show how this is done for Step 1
The procedure for the remaining steps is similar

49

Step 1: Instruction Fetch Step

IR = Memory[PC];
PC = PC + 4;

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite
Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25– 0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory
MemData

Write
data

Address

MemRead=1

IRWrite=1

IorD=0

50

Step 1: Instruction Fetch Step

IR = Memory[PC];
PC = PC + 4;

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite
Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25– 0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory
MemData

Write
data

Address

Increment PC by 4: ALUSrcA=0; ALUSrcB=01;
ALUOp=00 (for ALU to ADD)

51

Step 1: Instruction Fetch Step

IR = Memory[PC];
PC = PC + 4;

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite
Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25– 0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory
MemData

Write
data

Address

Store incremented instruction address back to PC:
PCSource=00; PCWrite=1

52

Steps 2 – 5

Determining the values of the control signals for Steps 2 – 5
follows the same procedure
The next stage is to design the control unit, which will
generate these control signals

53

Value of control signals is dependent upon:
what instruction is being executed
which step is being performed

Use the information we have accumulated (ex: control signals
for Step 1) to specify a finite state machine (FSM)

specify the finite state machine graphically, or
use microprogramming

Implementation can be derived from specification

Implementing the Control

54

FSM: high level view

Start/reset

Instruction fetch, decode and register fetch

Memory access
instructions

R-type
instructions

Branch
instruction

Jump
instruction

55

FSM implementation of the control unit

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

Register fetch

 (Op = 'LW') or (Op = 'SW') (Op = R-type)

(O
p =

 'B
EQ')

(O
p

=
'J

M
P

')

0
1

Start

Memory reference FSM
(Figure 5.38)

R-type FSM
(Figure 5.39)

Branch FSM
(Figure 5.40)

Jump FSM
(Figure 5.41)

56

FSM for memory reference instructions

MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegWrite
MemtoReg = 1

RegDst = 0

Memory address computation

(Op = 'LW') or (Op = 'SW')

Memory
access

Write-back step

 (Op = 'SW
')

(O
p

=
'L

W
')

4

2

53

From state 1

To state 0
(Figure 5.37)

Memory
access

57

FSMs for other instructions

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

RegDst = 1
RegWrite

MemtoReg = 0

Execution

R-type completion

6

7

(Op = R-type)
From state 1

To state 0
(Figure 5.37)

Branch completion
8

(Op = 'BEQ')
From state 1

To state 0
(Figure 5.37)

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

Jump completion
9

(Op = 'J')
From state 1

To state 0
(Figure 5.37)

PCWrite
PCSource = 10

R-type instructions

Branch instruction Jump instruction

58

The Full FSM for the Control Unit

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp= 10

RegDst = 1
RegWrite

MemtoReg = 0
MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
RegWrite

MemtoReg=1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

 (Op = 'LW') or (Op = 'SW') (Op = R-type)

(O
p

= '
BEQ')

(O
p

=
'J

')

 (Op = 'SW
')

(O
p

=
'L

W
')

4

0
1

9862

753

Start

Obtained by simply joining the
FSMs in the previous slides

59

Implementation:

Finite State Machine for Control
P C W rite

PC W riteC on d
Io rD

M em to R eg
P C S ou rce
A L U O p
A L U S rcB
A L U S rcA
R egW rite
R egD st

N S3
N S2
N S1
N S0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

S ta te regis te r

IR W rite

M em R ead
M em W rite

Ins tru ct io n re g is ter
o pcode fie ld

O u tp uts

C on tro l log ic

Inputs

60

Further Improvement

We saw that performance can be improved by using a
multicycle implementation, compared to a single cycle one
Most modern processors rely on further improvements by
exploiting instruction-level parallelism (ILP), where multiple
instructions are evaluated in parallel
We will now briefly look at simple pipelining
In the following classes, we will review the basic concepts of
Superscalar and VLIW processors

61

Pipelining

Improve performance by increasing instruction throughput

Ins truction
fetch

Reg ALU
Data

access
Reg

8 ns
Instruction

fetch
R eg ALU

Data
access

Reg

8 ns
Instruction

fetch

8 ns

Tim e

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program
execution
order
(in instructions)

Instruction
fetch

Reg ALU
Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data
access

Reg

2 ns
Instruction

fetch
Reg ALU

Data
access

Reg

2 ns 2 ns 2 ns 2 ns 2 ns

P rogram
execution
order
(in instructions)

62

Pipelining

Ideal speedup = number of stages

Do we achieve this?

63

Pipelining

What makes it easy
all instructions are the same length
just a few instruction formats
memory operands appear only in loads and stores

What makes it hard?
structural hazards: suppose we had only one memory
control hazards: need to worry about branch instructions
data hazards: an instruction depends on a previous instruction

64

Basic Idea

What do we need to add to actually split the datapath into stages?

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

Instruction

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data1

Read
data2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataAddress

Data
memory

1

ALU
result

M
u
x

ALU
Zero

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back

65

Pipelined Datapath
Can you find a problem even if there are no

dependencies? What instructions can we execute
to manifest the problem?

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1
Registers

Read
data1

Read
data2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Data
memory

Address

64
128 97 64

66

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction fetch
lw

Address

Data
memory

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Instruction decode
lw

Address

Data
memory

lw

67

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Execution
lw

Address

Data
memory

68

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataData

memory
1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Memory
lw

Address

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
data

Read
dataData

memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Write back
lw

Write
register

Address

69

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data
memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Execution
sw

Address

sw

70

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data
memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Memory
sw

Address

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0

Address

Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data
memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Write back
sw

sw

71

Corrected Datapath (lw)

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
str

uc
ti

o n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0

Address

Write
data

M
u
x

1
Registers

Read
data1

Read
data2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data
memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX

72

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Address

Data
memory

Datapath used in all the five stages of lw

73

Graphically Representing Pipelines

Can help with answering questions like:
how many cycles does it take to execute this code?
what is the ALU doing during cycle 4?
use this representation to help understand datapaths

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6

Time(inclockcycles)

lw$10,20($1)

Program
execution
order
(ininstructions)

sub$11,$2, $3

ALU

ALU

74

Pipeline Control

PC

Instruction
memory

Address

In
st

ru
ct

io
n

Instruction
[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15–0]

0

0
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x
1

Write
data

Read
data M

u
x

1

ALU
control

RegWrite

MemRead

Instruction
[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data
memory

PCSrc

Zero

Add Add
result

Shift
left 2

ALU
result

ALU
Zero

Add

0

1

M
u
x

0

1

M
u
x

75

We have 5 stages. What needs to be controlled in each
stage?

Instruction Fetch and PC Increment
Instruction Decode / Register Fetch
Execution
Memory Stage
Write Back

How would control be handled in an automobile plant?
a fancy control center telling everyone what to do?
should we use a finite state machine?

Pipeline control

76

Pass control signals along just like the data
No control signals for IF and ID, but only for the remaining three stages

Pipeline Control

Execution/Address Calculation
stage control lines

Memory access stage
control lines

stage control
lines

Instruction
Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src Branch

Mem
Read

Mem
Write

Reg
write

Mem to
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

77

Datapath with Control

PC

Instruction
memory

In
st

r u
ct

io
n

Add

Instruction
[20– 16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15–0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x
1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2R

eg
W

r it
e

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WBIF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
ri t

e

Address
Data

memory

Address

78

Hazards

Hazards: problems due to pipelining

Hazard types:
Structural

same resource is needed multiple times in the same cycle
Data

data dependencies limit pipelining
Control

next executed instruction is not the next specified
instruction

79

Structural hazards

Examples:
Two accesses to a single ported memory
Two operations need the same function unit
at the same time
Two operations need the same function unit
in successive cycles, but the unit is not pipelined

Solutions:
stalling
add more hardware

80

Structural hazards on MIPS

Do we have structural hazards on our simple MIPS pipeline?

time

In
st

ru
ct

i o
n

s t
re

am IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

81

Data hazards

Data dependencies:
RaW (read-after-write)
WaW (write-after-write)
WaR (write-after-read)

Hardware solution:
Forwarding / Bypassing
Detection logic
Stalling

Software solution: Scheduling

82

Control hazards

Control operations may change the sequential flow of
instructions

branch
jump
call (jump and link)
return
exception

83

SRAM:
value is stored on a pair of inverting gates
very fast but takes up more space than DRAM (4 to 6 transistors)
access time: 5-25 ns
Cost (US$) per MByte in 1997: 100 to 250

DRAM:
value is stored as a charge on capacitor (must be refreshed)
very small but slower than SRAM (factor of 5 to 10)
access time: 60-120 ns
Cost (US$) per MByte in 1997: 5 to 10

Memories: Review

84

Memory Hierarchy: why?

Users want large and fast memories!
SRAM access times are 2 - 25ns at cost of $100 to $250 per Mbyte.
DRAM access times are 60-120ns at cost of $5 to $10 per Mbyte.
Disk access times are 10 to 20 million ns at cost of $.10 to $.20 per
Mbyte.

Try and give it to them anyway
build a memory hierarchy

CPU

Level 1

Level 2

Level n

Size

Speed

85

Memory Hierarchy: requirements

If level is closer to Processor, it must…
Be smaller
Be faster
Contain a subset (most recently used data) of lower levels
beneath it
Contain all the data in higher levels above it

Lowest Level (usually disk or the main memory) contains all the
available data

86

Locality

A principle that makes having a memory hierarchy a good
idea

If an item is referenced,
temporal locality: it will tend to be referenced again soon
spatial locality : nearby items will tend to be referenced soon.

Our initial focus: two levels (upper, lower)
block: minimum unit of data
hit: data requested is in the upper level
miss: data requested is not in the upper level

87

Two issues:
How do we know if a data item is in the cache?
If it is, how do we find it?

Our first example:
block size is one word of data
"direct mapped"

For each item of data at the lower level,
there is exactly one location in the cache where it might be.

e.g., lots of items at the lower level share locations in the upper level

Cache

88

Direct Mapped Cache

Cache Location 0 can be occupied by data from:
Memory location 0, 4, 8, ...
In general: any memory location that is
multiple of 4

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

89

Mapping: address is modulo the number of blocks in the
cache

Direct Mapped Cache

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1

90

Issues with Direct Mapped Caches

Since multiple memory addresses map to same cache index,
how do we tell which one is in there?
What if we have a block size > 1 byte?

Solution: divide memory address into three fields

ttttttttttttttttt iiiiiiiiii oooo

tag index byte
to check to offset
if have select within
correct block block block

91

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1

Check if we have the correct block

00001 01001

92

Direct Mapped Caches: Terminology
All fields are read as unsigned integers.
Index: specifies the cache index (which “row” of the cache
we should look in)
Offset: once we’ve found correct block, specifies which byte
within the block we want
Tag: the remaining bits after offset and index are determined;
these are used to distinguish between all the memory
addresses that map to the same location

ttttttttttttttttt iiiiiiiiii oooo

tag index byte
to check to offset
if have select within
correct block block block

93

For MIPS:

Direct Mapped Cache

20 10

Byte
offset

Valid Tag DataIndex
0
1
2

1021
1022
1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0
Address (bit positions)

94

Direct Mapped Cache

Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 32 1 0

Address (bit positions)
Taking advantage of spatial locality:

95

Read hits
this is what we want!

Read misses
stall the CPU, fetch block from memory, deliver to cache, restart the
load instruction

Write hits:
can replace data in cache and memory (write-through)
write the data only into the cache (write-back the cache later)

Write misses:
read the entire block into the cache, then write the word (allocate on
write miss)
do not read the cache line; just write to memory (no allocate on write
miss)

Hits vs. Misses

96

Improving performance

Two ways of improving performance:

decreasing the miss ratio: associativity
decreasing the miss penalty: multilevel caches

97

Decreasing miss ratio with associativity

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data

Four-way set associative

Set

0

1

Tag Data

One way set associative
(direct mapped)

Block

0

7

1

2

3

4

5

6

Tag Data

Two-way set associative

Set

0

1

2

3

Tag Data

block

2 blocks / set

4 blocks / set

8 blocks / set

98

Block replacement policy

In a direct mapped cache, when a miss occurs, the requested
block can go only at one position.

In a set-associative cache, there can be multiple positions in a
set for storing each block. If all the positions are filled, which
block should be replaced?
Least Recently Used (LRU) Policy
Randomly choose a block and replace it

99

References

Computer Organization and Design by Patterson and
Hennessy (for the basic topics that we discussed today)
Computer Architecture – A Quantitative Approach by
Hennessy and Patterson, Chapters 3, 4 and 5 (for Superscalar
and VLIW processors and memory hierarchy design)
Virtual Machines by Smith and Nair, Appendix A (Real
Machines) for overview of Computer Architecture and OS

100

Next Class

Some System ISA issues (especially memory management)
Overview of PowerPC ISA
Overview of Intel IA-32 ISA
Implementation of Process VMs using interpretation

	CS6270: Virtual Machines
	Last Week’s Class: VM Taxonomy
	Today: Review of Background Material
	Computer System Hardware – Major Components
	Basics of Processors
	MIPS Operands: Registers and Memory
	MIPS: Addressing Modes
	MIPS: Instruction Format
	MIPS: Instruction Format (Contd.)
	MIPS: Instruction Format (Contd.)
	MIPS: Instruction Format (Contd.)
	Execution Time of a Program - Factors
	The Processor: Datapath & Control
	Building Blocks
	Incrementing the Program Counter (PC)
	Datapath for R-type Instructions
	Datapath for R-type Instructions (Contd.)
	Datapath for Load/Store Instructions
	Datapath for Load Instructions
	Datapath for Store Instructions
	Datapath for Branch Instructions
	Memory & R-type Instructions: Combined Datapath
	Using the Multiplexor
	Adding “Instruction Fetch”
	Simple Datapath for the MIPS Architecture
	Simple Control Structure
	Control: Two-level implementation
	Designing Control 1
	Deriving Control2 signals
	Similarly for the Other Instructions
	Where we are headed?
	Why single cycle implementation is not used?
	Why single cycle implementation is not used?
	Multicycle implementation: Basics
	Single-Cycle versus Multicycle
	Multicycle implementation: Additional Registers
	Multicycle implementation
	Multicycle implementation: Additional Registers
	Multicycle implementation: Examples
	Multicycle Approach: Summary
	Multicycle implementation: Steps
	Step 1: Instruction Fetch
	Step 2: Instruction Decode and Register Fetch
	Step 3 (instruction dependent)
	Step 4 (R-type or memory-access)
	Step 5: Write-back step
	Summary of execution steps
	Slide Number 48
	Step 1: Instruction Fetch Step
	Step 1: Instruction Fetch Step
	Step 1: Instruction Fetch Step
	Slide Number 52
	Implementing the Control
	FSM: high level view
	FSM implementation of the control unit
	FSM for memory reference instructions
	FSMs for other instructions
	The Full FSM for the Control Unit
	Finite State Machine for Control
	Further Improvement
	Pipelining
	Pipelining
	Pipelining
	Basic Idea
	Pipelined Datapath
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Corrected Datapath (lw)
	Slide Number 72
	Graphically Representing Pipelines
	Pipeline Control
	Pipeline control
	Pipeline Control
	Datapath with Control
	Hazards
	Structural hazards
	Structural hazards on MIPS
	Data hazards
	Control hazards
	Memories: Review
	Memory Hierarchy: why?
	Memory Hierarchy: requirements
	Locality
	Cache
	Direct Mapped Cache
	Direct Mapped Cache
	Issues with Direct Mapped Caches
	Check if we have the correct block
	Direct Mapped Caches: Terminology
	Direct Mapped Cache
	Direct Mapped Cache
	Hits vs. Misses
	Improving performance
	Decreasing miss ratio with associativity
	Block replacement policy
	References
	Next Class

