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CS6270: Virtual Machines

Samarjit Chakraborty

Lecture 2: Background 
Review of Basic Computer Architecture Concepts 
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Last Week’s Class: VM Taxonomy
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Today: Review of Background Material

Virtual machines essentially present an interface that is 
identical to some desired real machine

Hence, it is important to understand the interfaces that real 
machines provide and how such interfaces are 
supported/implemented

In particular, we will review concepts from 
Computer architecture (today’s class)
Operating systems
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Computer System Hardware – Major Components
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Basics of Processors

We will use the MIPS instruction set to illustrate the basic 
concepts 

This instruction set is used by NEC, Nintendo, Silicon Graphics, Sony, 
…

MIPS fields

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op: Operation of the instruction (opcode)
rs: First register source operand
rt: Second register source operand
rd: Register destination operand
shamt: Shift amount
funct: Function field (selects specific variant of opcode)
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MIPS Operands: Registers and Memory

Name Examples Comments
32 registers $s0-$s7, $t0-$t9, $zero, $a0- 

$a3, $v0-$v1, $gp, $fp, $sp, 
$ra, $at

Fast locations for data. In MIPS, data 
must be in registers to perform 
arithmetic. 

230 memory 
words

Mem[0], Mem[4], …, 
Mem[4294967292].

Accessed only by data transfer 
instructions. MIPS uses byte addresses, 
so sequential words differ by 4. 
Memory holds data structures, such as 
arrays, and spilled registers, such as 
those saved on procedure calls.

MIPS operands
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MIPS: Addressing Modes

op rs rt rd

register

Register (direct)

op rs rt immedImmediate

Displacement op rs rt immed

register

Memory

+

PC-relative op rs rt immed

PC

Memory

+
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MIPS: Instruction Format

Fixed-length instruction format
All instructions are 32-bit long
Very structured
Only three instruction formats: R, I, J

R-format
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op rs rt rd shamt funct

I-format op rs rt 16-bit immed/address

J-format op 26-bit address
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MIPS: Instruction Format (Contd.)

R-format: Used for instructions with 3 register operands
Arithmetic instructions:

add $t0, $s1, $s2 # $t0 $s1 + $s2
Note  that $t0 is register 8, $s1 is register 17 and $s2 is register 18.  

R-format
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op rs rt rd shamt funct

01000 00000 100000000000 10001 10010
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MIPS: Instruction Format (Contd.)

I-format: For data transfer instructions
Examples: load word (lw) and store word (sw)

One register operand and one memory address operand (specified 
by a constant and a register)

lw $t0, 40($s2) # load Mem[$s2+40] to $t0
$t0 is register 8 and $s2 is register 18. 

I-format

0000000000101000100011 10010 01000

6 bits 5 bits 5 bits 16 bits
op rs rt 16-bit immed/address
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J-format: For jump instructions
j Label # next instr. at Label

Formats:

Jump instructions just use high-order bits of PC
Address = bits 31-28 of PC + shift_left_2_bits(26-bit address)
Address boundaries of 256 MB.

J-format op 26-bit address

MIPS: Instruction Format (Contd.)
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Execution Time of a Program - Factors

Instruction Count
Determined by compiler and ISA

Clock cycle time
Determined by the architecture/implementation of the ISA

Number of Clock Cycles per Instruction (CPI)
Determined by the architecture/implementation of the ISA

We will now look at different possible implementation 
possibilities
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Implementation of the MIPS ISA
Simplified to contain only:

memory-reference instructions: lw, sw
arithmetic-logical instructions:  add, sub, and, or, slt
control flow instructions:  beq, j

Generic Implementation:
use the program counter (PC) to supply instruction address
get the instruction from memory
read registers
use the instruction to decide exactly what to do

All instructions use the ALU after reading the registers
Why?  

memory-reference?  
arithmetic? 
control flow?

The Processor:  Datapath & Control
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Building Blocks

Different functional units we need for each instruction

PC

Instruction
memory

Instruction
address

Instruction

a. Instruction memory b. Programcounter

Add Sum

c. Adder

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address
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Incrementing the Program Counter (PC)

PC

Instruction 
memory

Read 
address

Instruction

4

Add

Fetching instructions and incrementing the PC
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Datapath for R-type Instructions

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits
R-type

ALU control

RegWrite

Registers
Write 
register

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Write 
data

ALU 
result

ALU

Data

Data

Register 
numbers

a. Registers b. ALU

Zero
5

5

5 3
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Instruction
Registers

Write 
register

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Write 
data

ALU 
result

ALU
Zero

RegWrite

ALU operation3

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits
R-type

rs

rt

rd

Datapath for R-type Instructions (Contd.)
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Datapath for Load/Store Instructions

Instruction

16 32

Registers
Write 
register

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Data 
memory

Write 
data

Read 
data

Write 
data

Sign 
extend
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result

Zero
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Address

MemRead

MemWrite
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ALU operation3

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits
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Datapath for Load Instructions

Instruction

16 32

Registers
Write 
register

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Data 
memory

Write 
data

Read 
data

Write 
data
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result
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ALU
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ALU operation3
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6 bits 16 bits5 bits5 bits
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rt
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Datapath for Store Instructions

Instruction

16 32

Registers
Write 
register

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Data 
memory

Write 
data

Read 
data

Write 
data

Sign 
extend

ALU 
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

op rs rt immediate
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6 bits 16 bits5 bits5 bits

rs

rt

immediate
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Datapath for Branch Instructions

The ALU is used to evaluate the branch condition and a separate adder 
is used to compute the branch target address as the sum of the 
incremented PC and the sign-extended lower 16 bits of the instruction 
shifted left by 2 bits

16 32
Sign 

extend

ZeroALU

Sum

Shift 
left 2

To branch 
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write 
register

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Write 
data

RegWrite

ALU operation
3
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Memory & R-type Instructions: Combined Datapath

Instruction
Registers

Write 
register

Read 
data 1

Read 
data 2

Read 
register 1

Read 
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Write 
data

ALU 
result
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Zero

RegWrite

ALU operation3
Instruction

16 32
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Write 
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Read 
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Read 
data 2

Read 
register 1
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Using the Multiplexor
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Adding “Instruction Fetch”

The Instruction Fetch portion of the datapath has now been 
added to the previous datapath

PC

Instruction 
memory

Read 
address

Instruction

16 32

Registers

Write 
register
Write 
data

Read 
data 1

Read 
data 2

Read 
register 1
Read 
register 2

Sign 
extend

ALU 
result
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Data 
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Address

Write 
data

Read 
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u 
x

4
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x
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ALU operation3

MemRead
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ALUSrc
MemtoReg
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Simple Datapath for the MIPS Architecture
Finally, adding the datapath for branch instructions

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
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4

M
u
x

ALU operation3

RegWrite

MemRead
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ALUSrc
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ALU
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Data
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Read
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u
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All of the logic is combinational

Wait for everything to settle down, and the right thing to 
be done

ALU might not produce “right answer” right away

Use write signals along with clock to determine when 
to write

Cycle time determined by length of the longest path

Simple Control Structure

Clock cycle

State
element

1
Combinational logic

State
element

2
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Control: Two-level implementation
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0
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bit
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ALU

00: lw, sw
01: beq
10: add, sub, and, or, slt

000: and
001: or
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110: sub
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6
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Designing Control 1
in
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Assume that Control 2 generates the 2-bit
ALUop based on the opcode. Now, using this
2-bit ALUop and the function field of the 
instruction, Control 1 generates the 3-bit
control signal ALUcontrol.

ALUcontrol will determine the function
that the ALU will perform (ADD, OR, etc.)
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Deriving Control2 signals

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

9 control (output) signals

Determine these control signals directly from the opcodes: 
R-format:   0
lw: 35
sw: 43
beq: 4

Input
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For each opcode, find the values of the control signals
Construct the truth table
Determine the logic that implements this truth table

Similarly for the Other Instructions

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1
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Where we are headed?
Single Cycle Problems:

what if we had a more complicated instruction like floating point?
wasteful of area: NO Sharing of Hardware resources

One Solution:
use a “smaller” cycle time
have different instructions take different numbers of cycles
a “multicycle” datapath:

PC

Memory

Address

Instruction
or data

Data

Instruction
register

Registers
Register #

Data

Register #

Register #

ALU

Memory
data

register

A

B

ALUOut

IR

MDR
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Why single cycle implementation is not used?

Assume the following access times: Memory (2ns), ALU & 
adders (2ns), reg. file access (1ns)
Fixed length clock: longest instruction is the ‘lw’ which 
requires 8 ns

Load uses five functional units: instruction memory, 
register file, ALU, data memory, register file once again
Hence, clock cycle is 8ns

Clock cycle is determined by the longest path in the machine 
(lw in this case)
However, several other instructions could fit into a shorter 
clock cycle
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Why single cycle implementation is not used?

R-type: Instruction fetch, Reg access, ALU, Reg access
Load: Instruction fetch, Reg access, ALU, Mem access, Reg
access
Store: Instruction fetch, Reg access, ALU, Mem access
Branch: Instruction fetch, Reg access, ALU
Jump: Instruction fetch

Note the difference between Load and Jump. This difference
becomes even more significant of there are floating-point instructions.



34

Multicycle implementation: Basics

In the previous slide, the execution of each instruction was 
broken into several steps
In a multicycle implementation, each such step executes in 
1 clock cycle
Hence, different instructions require different number of 
clock cycles 
Advantages:

More efficient
A functional unit can be used more than once per 
instruction, as long as it is used in different clock cycles 
(so less hardware is required)

But the design is more complex
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Single-Cycle versus Multicycle
In a multicycle 
architecture:
Single memory unit for both 
instruction and data
Single ALU, rather than one 
ALU and two adders
One or more registers added 
after each functional unit to 
hold the output of that unit, 
until the value is used in the 
next clock cycle

PC

Memory

Address

Instruction
or data

Data

Instruction
register

Registers
Register #

Data

Register #

Register #

ALU
Memory
data

register

A

B

ALUOut

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALUresult

M
ux

Registers

Write
register
Write
data

Read
data1

Read
data2

Read
register 1
Read
register 2

Shift
left 2

4

Mu
x

ALUoperation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc
MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data Mu

x

Sign
extend

Add

Multicycle architecture

Single cycle architecture
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Multicycle implementation: Additional Registers

Instruction Register, Memory Data Register, Registers A 
and B in front of the Reg file and ALUOut (reg in front of 
the ALU)
At the end of each clock cycle, the data to be used in 
subsequent clock cycles is stored in a state element

data to be used in subsequent instructions in a later 
clock cycle is stored in a programmer-visible state 
element like reg file, PC or memory
data used by the same instruction in a later cycle is 
stored in one of the additional registers 
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Multicycle implementation

Each clock cycle can accommodate at most one of the 
following operations:

a memory access
a register file access (two reads or one write)
an ALU operation

Hence, any data produced by one of the above three 
functional units must be saved into a temporary register for 
use in a later cycle
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Multicycle implementation: Additional Registers

P C

M em ory

Addre ss

Ins truction
or data

Data

Ins truc tion

registe r

Re gisters

Reg is ter #

Data

Reg is ter #

Reg is ter #

ALU

M emory

data

register

A

B

ALUOut

All registers except the Instruction register (IR) hold data only between
a pair of adjacent clock cycles (and hence do not need a write control signal)
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Multicycle implementation: Examples

ALU used to compute PC = PC + 4

Shift 
left 2

PC

Memory

 

MemData

Write 
data

M 
u 
x

0

1

Registers
Write 
register

Write 
data

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

M 
u 
x

0

1

M 
u 
x

0

1

4

Instruction 
[15– 0]

Sign 
extend

3216

Instruction 
[25– 21]

Instruction 
[20– 16]

Instruction 
[15– 0]

Instruction 
register

1 M 
u 
x

0

3
2

M 
u 
x

ALU 
result

ALU
Zero

Memory 
data 

register

Instruction 
[15– 11]

 
A

B

ALUOut

0

1

Address

The same ALU is also used for R-type instructions, branch address 
computation, computing memory address in the case of lw/sw instructions
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Break up the instructions into steps, each step takes a cycle
balance the amount of work to be done
restrict each cycle to use only one major functional unit

At the end of a cycle
store values for use in later cycles (easiest thing to do)
introduce additional “internal” registers

Notice: we distinguish 
processor state: programmer visible registers
internal state: programmer invisible registers (like IR, 
MDR, A, B, and ALUout)

Multicycle Approach: Summary
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Multicycle implementation: Steps

Instruction fetch
Instruction decode and register fetch
Execution, memory address computation or branch 
completion
Memory access or R-type instruction completion
Memory read completion

common for 
all instructions

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!
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Use PC to get instruction and put it in the Instruction Register
Increment the PC by 4 and put the result back in the PC
Can be described succinctly using RTL "Register-Transfer 
Language"

IR = Memory[PC];
PC = PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1:  Instruction Fetch

This step is common for all instructions (obviously!)
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Read registers rs and rt in case we need them
Compute the branch address in case the instruction is a branch
Previous two actions are done optimistically (no harm is done)
RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC+(sign-extend(IR[15-0])<< 2);

We aren't setting any control lines based on the instruction type 
(we are busy "decoding" it in our control logic)

Step 2:  Instruction Decode and Register Fetch

This step is also common for all instructions
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ALU is performing one of four functions, based on instruction type

Memory Reference:
ALUOut = A + sign-extend(IR[15-0]);

R-type:
ALUOut = A op B;

Branch:
if (A==B) PC = ALUOut;

Jump:

PC = PC[31-28] || (IR[25-0]<<2)

Step 3 (instruction dependent)
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Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;

R-type instructions finish

Reg[IR[15-11]] = ALUOut;

Step 4 (R-type or memory-access)
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Memory read completion step

Reg[IR[20-16]]= MDR;

Step 5: Write-back step
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Step name
Action for R-type 

instructions
Action for memory-reference 

instructions
Action for 
branches

Action for       
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Steps taken to execute any instruction class

Summary of execution steps
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Multicycle Control Unit

We now need to determine the values of the control  signals 
for each of the Steps 1 – 5
The next few slides show how this is done for Step 1
The procedure for the remaining steps is similar
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Step 1: Instruction Fetch Step

IR = Memory[PC];
PC = PC + 4;

Shift 
left 2

PC
M 
u 
x
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Registers
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register

Write 
data

Read 
data 1

Read 
data 2

Read 
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Instruction 
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[20– 16]

Instruction 
[15– 0]
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ALU 
control

ALU 
result
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Memory 
data 

register

 
A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite
Control

Outputs

Op 
[5– 0]

Instruction 
[31-26]

Instruction [5– 0]

M 
u 
x

0

2

Jump 
address [31-0]Instruction [25– 0] 26 28
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left 2

PC [31-28]

1
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u 
x

0

3
2

M 
u 
x

0

1
ALUOut

Memory
MemData

Write 
data

Address

MemRead=1

IRWrite=1

IorD=0
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Step 1: Instruction Fetch Step

IR = Memory[PC];
PC = PC + 4;

Shift 
left 2

PC
M 
u 
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data

Read 
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ALUSrcA

RegDst
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1
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MemData

Write 
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Address

Increment PC by 4: ALUSrcA=0; ALUSrcB=01; 
ALUOp=00 (for ALU to ADD) 
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Step 1: Instruction Fetch Step

IR = Memory[PC];
PC = PC + 4;

Shift 
left 2
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Store incremented instruction address back to PC:
PCSource=00; PCWrite=1 
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Steps 2 – 5

Determining the values of the control signals for Steps 2 – 5 
follows the same procedure
The next stage is to design the control unit, which will 
generate these control signals
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Value of control signals is dependent upon:
what instruction is being executed
which step is being performed

Use the information we have accumulated (ex: control signals 
for Step 1) to specify a finite state machine (FSM)

specify the finite state machine graphically, or
use microprogramming

Implementation can be derived from specification

Implementing the Control
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FSM: high level view

Start/reset

Instruction fetch, decode and register fetch

Memory access
instructions

R-type 
instructions

Branch 
instruction

Jump
instruction
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FSM implementation of the control unit

ALUSrcA = 0 
ALUSrcB = 11 
ALUOp = 00 

 

MemRead 
ALUSrcA = 0 

IorD = 0 
IRWrite 

ALUSrcB = 01 
ALUOp = 00 

PCWrite 
PCSource = 00

Instruction fetch
Instruction decode/ 

Register fetch

 (Op = 'LW') or (Op = 'SW') (Op = R-type)

(O
p =

 'B
EQ')

(O
p 

= 
'J

M
P

')

0
1

Start

Memory reference FSM 
(Figure 5.38)

R-type FSM 
(Figure 5.39)

Branch FSM 
(Figure 5.40)

Jump FSM 
(Figure 5.41)
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FSM for memory reference instructions

MemWrite 
IorD = 1

MemRead 
IorD = 1

ALUSrcA = 1 
ALUSrcB = 10 
ALUOp = 00

RegWrite 
MemtoReg = 1 

RegDst = 0

Memory address computation

(Op = 'LW') or (Op = 'SW')

Memory 
access

Write-back step

 (Op = 'SW
')

(O
p 

= 
'L

W
')

4

2

53

From state 1

To state 0 
(Figure 5.37)

Memory 
access
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FSMs for other instructions

ALUSrcA = 1 
ALUSrcB = 00 
ALUOp = 10

 
RegDst = 1 
RegWrite 

MemtoReg = 0

Execution

R-type completion

6

7  

(Op = R-type)
From state 1

To state 0 
(Figure 5.37)

Branch completion
8

(Op = 'BEQ')
From state 1

To state 0 
(Figure 5.37)

ALUSrcA = 1 
ALUSrcB = 00 
ALUOp = 01 
PCWriteCond 

PCSource = 01

Jump completion
9

(Op = 'J')
From state 1

To state 0 
(Figure 5.37)

PCWrite 
PCSource = 10

R-type instructions

Branch instruction Jump instruction
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The Full FSM for the Control Unit

PCWrite 
PCSource = 10

ALUSrcA = 1 
ALUSrcB = 00 
ALUOp = 01 
PCWriteCond 

PCSource = 01

ALUSrcA =1 
ALUSrcB = 00 
ALUOp= 10

RegDst = 1 
RegWrite 

MemtoReg = 0
MemWrite 
IorD = 1

MemRead 
IorD = 1

ALUSrcA = 1 
ALUSrcB = 10 
ALUOp = 00

RegDst = 0 
RegWrite 

MemtoReg=1 
 

ALUSrcA = 0 
ALUSrcB = 11 
ALUOp = 00

MemRead 
ALUSrcA = 0 

IorD = 0 
IRWrite 

ALUSrcB = 01 
ALUOp = 00 

PCWrite 
PCSource = 00

Instruction fetch
Instruction decode/ 

register fetch

Jump 
completion

Branch 
completionExecution

Memory address 
computation

Memory 
access

Memory 
access R-type completion

Write-back step

 (Op = 'LW') or (Op = 'SW') (Op = R-type)

(O
p 

= '
BEQ')

(O
p 

= 
'J

')

 (Op = 'SW
')

(O
p 

= 
'L

W
')

4

0
1

9862

753

Start

Obtained by simply joining the
FSMs in the previous slides
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Implementation:

Finite State Machine for Control
P C W rite

PC W riteC on d
Io rD

M em to R eg
P C S ou rce
A L U O p
A L U S rcB
A L U S rcA
R egW rite
R egD st

N S3
N S2
N S1
N S0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

S ta te  regis te r

IR W rite

M em R ead
M em W rite

Ins tru ct io n re g is ter 
o pcode  fie ld

O u tp uts

C on tro l log ic

Inputs
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Further Improvement

We saw that performance can be improved by using a 
multicycle implementation, compared to a single cycle one
Most modern processors rely on further improvements by 
exploiting instruction-level parallelism (ILP), where multiple 
instructions are evaluated in parallel
We will now briefly look at simple pipelining
In the following classes, we will review the basic concepts of 
Superscalar and VLIW processors
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Pipelining

Improve performance by increasing instruction throughput

Ins truction
fetch

Reg ALU
Data

access
Reg

8 ns
Instruction

fetch
R eg ALU

Data
access

Reg

8 ns
Instruction

fetch

8 ns

Tim e

lw $1, 100($0 )

lw $2, 200($0 )

lw $3, 300($0 )

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program
execution
order
(in instructions)

Instruction
fetch

Reg ALU
Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data
access

Reg

2 ns
Instruction

fetch
Reg ALU

Data
access

Reg

2 ns 2 ns 2 ns 2 ns 2 ns

P rogram
execution
order
( in instructions)
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Pipelining

Ideal speedup = number of stages

Do we achieve this?
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Pipelining

What makes it easy
all instructions are the same length
just a few instruction formats
memory operands appear only in loads and stores

What makes it hard?
structural hazards:   suppose we had only one memory
control hazards:  need to worry about branch instructions
data hazards:  an instruction depends on a previous instruction
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Basic Idea

What do we need to add to actually split the datapath into stages?

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

Instruction

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data1

Read
data2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataAddress

Data
memory

1

ALU
result

M
u
x

ALU
Zero

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back
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Pipelined Datapath
Can you find a problem even if there are no 

dependencies?  What instructions can we execute 
to manifest the problem?

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1
Registers

Read
data1

Read
data2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Data
memory

Address

64
128 97 64
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Instruction 
memory

Address
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0
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Instruction 
memory

Address
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Address

Data 
memory
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Instruction 
memory

Address
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Instruction 
memory

Address

4

32

0

Add Add 
result

Shift 
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M 
u 
x

0

1

Add

PC

0Write 
data

M 
u 
x

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
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Instruction 
memory
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Corrected Datapath (lw)
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Instruction 
memory
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Datapath used in all the five stages of lw
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Graphically Representing Pipelines

Can help with answering questions like:
how many cycles does it take to execute this code?
what is the ALU doing during cycle 4?
use this representation to help understand datapaths

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6

Time(inclockcycles)

lw$10,20($1)

Program
execution
order
(ininstructions)

sub$11,$2, $3

ALU

ALU
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Pipeline Control

PC
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We have 5 stages.  What needs to be controlled in each 
stage?

Instruction Fetch and PC Increment
Instruction Decode / Register Fetch
Execution
Memory Stage
Write Back

How would control be handled in an automobile plant?
a fancy control center telling everyone what to do?
should we use a finite state machine?

Pipeline control
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Pass control signals along just like the data
No control signals for IF and ID, but only for the remaining three stages

Pipeline Control

Execution/Address Calculation 
stage control lines

Memory access stage 
control lines

stage control 
lines

Instruction
Reg 
Dst

ALU 
Op1

ALU 
Op0

ALU 
Src Branch

Mem 
Read

Mem 
Write

Reg 
write

Mem to 
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction
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Datapath with Control
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Hazards

Hazards: problems due to pipelining

Hazard types:
Structural

same resource is needed multiple times in the same cycle
Data

data dependencies limit pipelining
Control

next executed instruction is not the next specified 
instruction
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Structural hazards

Examples:
Two accesses to a single ported memory
Two operations need the same function unit
at the same time
Two operations need the same function unit
in successive cycles, but the unit is not pipelined

Solutions:
stalling
add more hardware
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Structural hazards on MIPS

Do we have structural hazards on our simple MIPS pipeline?

time

In
st

ru
ct

i o
n  

s t
re

am IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB
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Data hazards

Data dependencies:
RaW (read-after-write)
WaW (write-after-write)
WaR (write-after-read)

Hardware solution: 
Forwarding / Bypassing
Detection logic
Stalling

Software solution: Scheduling
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Control hazards

Control operations may change the sequential flow of 
instructions

branch
jump
call (jump and link)
return
exception
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SRAM:
value is stored  on a pair of inverting gates
very fast but takes up more space than DRAM (4 to 6 transistors)
access time: 5-25 ns
Cost (US$) per MByte in 1997: 100 to 250

DRAM:
value is stored as a charge on capacitor (must be refreshed)
very small but slower than SRAM (factor of 5 to 10)
access time: 60-120 ns
Cost (US$) per MByte in 1997: 5 to 10

Memories:  Review
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Memory Hierarchy: why?

Users want large and fast memories! 
SRAM access times are 2 - 25ns at cost of $100 to $250 per Mbyte.
DRAM access times are 60-120ns at cost of $5 to $10 per Mbyte.
Disk access times are 10 to 20 million ns at cost of $.10 to $.20 per 
Mbyte.

Try and give it to them anyway
build a memory hierarchy

CPU

Level 1

Level 2

Level n

Size

Speed
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Memory Hierarchy: requirements

If level is closer to Processor, it must…
Be smaller
Be faster
Contain a subset (most recently used data) of lower levels 
beneath it
Contain all the data in higher levels above it

Lowest Level (usually disk or the main memory) contains all the 
available data
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Locality

A principle that makes having a memory hierarchy a good 
idea

If an item is referenced,
temporal locality:  it will tend to be referenced again soon
spatial locality :  nearby items will tend to be referenced soon.

Our initial focus:  two levels (upper, lower)
block:   minimum unit of data 
hit:  data requested is in the upper level
miss:  data requested is not in the upper level
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Two issues:
How do we know if a data item is in the cache?
If it is, how do we find it?

Our first example:
block size is one word of data
"direct mapped"

For each item of data at the lower level, 
there is exactly one location in the cache where it might be.

e.g., lots of items at the lower level share locations in the upper level

Cache
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Direct Mapped Cache

Cache Location 0 can be occupied by data from:
Memory location 0, 4, 8, ... 
In general: any memory location that is 
multiple of 4

Memory
Memory 
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4  Byte Direct 
Mapped Cache

Cache 
Index

0
1
2
3
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Mapping:  address is modulo the number of blocks in the 
cache

Direct Mapped Cache

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1
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Issues with Direct Mapped Caches

Since multiple memory addresses map to same cache index, 
how do we tell which one is in there?
What if we have a block size > 1 byte?

Solution: divide memory address into three fields

ttttttttttttttttt iiiiiiiiii oooo

tag index byte
to check to offset
if have select within 
correct block block block
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00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1

Check if we have the correct block

00001 01001
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Direct Mapped Caches: Terminology
All fields are read as unsigned integers.
Index: specifies the cache index (which “row” of the cache 
we should look in)
Offset: once we’ve found correct block, specifies which byte 
within the block we want
Tag: the remaining bits after offset and index are determined; 
these are used to distinguish between all the memory 
addresses that map to the same location

ttttttttttttttttt iiiiiiiiii oooo

tag index byte
to check to offset
if have select within 
correct block block block
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For MIPS:

Direct Mapped Cache

20 10

Byte
offset

Valid Tag DataIndex
0
1
2

1021
1022
1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0
Address (bit positions)
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Direct Mapped Cache

Address (showing bit positions)

16 12 Byte 
offset

V Tag Data

Hit Data

16 32

4K 
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31      16 15           4 32 1 0

Address (bit positions)
Taking advantage of spatial locality:
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Read hits
this is what we want!

Read misses
stall the CPU, fetch block from memory, deliver to cache, restart the 
load instruction 

Write hits:
can replace data in cache and memory (write-through)
write the data only into the cache (write-back the cache later)

Write misses:
read the entire block into the cache, then write the word (allocate on 
write miss)
do not read the cache line; just write to memory (no allocate on write 
miss)

Hits vs. Misses
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Improving performance

Two ways of improving performance:

decreasing the miss ratio: associativity
decreasing the miss penalty: multilevel caches
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Decreasing miss ratio with associativity

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data

Four-way set associative

Set

0

1

Tag Data

One way set associative
(direct mapped)

Block

0

7

1

2

3

4

5

6

Tag Data

Two-way set associative

Set

0

1

2

3

Tag Data

block

2 blocks / set

4 blocks / set

8 blocks / set
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Block replacement policy

In a direct mapped cache, when a miss occurs, the requested 
block can go only at one position.

In a set-associative cache, there can be multiple positions in a 
set for storing each block. If all the positions are filled, which 
block should be replaced?
Least Recently Used (LRU) Policy
Randomly choose a block and replace it 
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Computer Organization and Design by Patterson and 
Hennessy (for the basic topics that we discussed today)
Computer Architecture – A Quantitative Approach by 
Hennessy and Patterson, Chapters 3, 4 and 5 (for Superscalar 
and VLIW processors and memory hierarchy design)
Virtual Machines by Smith and Nair, Appendix A (Real 
Machines) for overview of Computer Architecture and OS
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Next Class

Some System ISA issues (especially memory management)
Overview of PowerPC ISA
Overview of Intel IA-32 ISA
Implementation of Process VMs using interpretation
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