CS6270: Virtual Machines

Lecture 2: Background
Review of Basic Computer Architecture Concepts

Samarjit Chakraborty
aNUS

National Universit
of Singapor

%

Last Week’s Class: VM Taxonomy

Process VMs
support an ABI

(user instr. + sys. calls)

System VMs
support complete ISA

|

|

I

I

I

I

| different
ISA | ISA

|

I

I

I

|

|

I

same ISA different same ISA
Multi Dynamic Classic Whole
programmed Translators OS VMs System VMs
Systems i :
Dynamic | Hosted Co-Designed
Binary HALL VMs VMs VMs

Optimizers

Today: Review of Background Material

= Virtual machines essentially present an interface that is
Identical to some desired real machine

= Hence, it Is important to understand the interfaces that real
machines provide and how such interfaces are
supported/implemented

= In particular, we will review concepts from
= Computer architecture (today’s class)
= Qperating systems

Computer System Hardware — Major Components

‘ Processor ‘ ‘ Memory ‘
Interface

‘ Controller ‘

Local Bus

Interface

High-Speed I/0 Bus

Frame
Buffer

Controller

Controller | Expansion |

Hard Drive |

D ROM LOW'SPEEd /O Bus

Basics of Processors

We will use the MIPS instruction set to illustrate the basic

concepts

= This instruction set is used by NEC, Nintendo, Silicon Graphics, Sony,

MIPS fields

op rs ‘ rt | rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op: Operation of the instruction (opcode)

rs: First register source operand

rt: Second register source operand

rd: Register destination operand

shamt: Shift amount

funct: Function field (selects specific variant of opcode)

MIPS Operands: Registers and Memory

MIPS operands

Name Examples Comments
32 registers | $s0-$s7, $t0-$t9, $zero, $a0- Fast locations for data. In MIPS, data
$a3, $v0-$v1, $gp, $fp, $sp, must be in registers to perform
$ra, $at arithmetic.
230 memory | Mem[0], Mem[4], ..., Accessed only by data transfer
words Mem[4294967292]. instructions. MIPS uses byte addresses,

so sequential words differ by 4.
Memory holds data structures, such as
arrays, and spilled registers, such as
those saved on procedure calls.

MIPS: Addressing Modes

Register (direct)

Immediate

Displacement

PC-relative

Memory

op rsi rt | rd
register
op rs | rt immed
op rsl rt immeoi
register —@—»
op rs | rt immed

PC

Memory

MIPS: Instruction Format

Fixed-length instruction format

All instructions are 32-bit long

Very structured

Only three instruction formats: R, I, J

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-format op rs rt rd shamt funct

I-format op rs rt 16-bit immed/address

J-format op 26-bit address

MIPS: Instruction Format (Contd.)

= R-format: Used for instructions with 3 register operands

= Arithmetic instructions:

. add $tQ, $s1, $s2
= Note that $t0 is register g,

$t0 € $s1 + $s2

pgister 17 and $s2 is register 18.

T

000000 | 10001 | 10010 | 01000 | 00000 | 100000
R-format
6 bits Sbhits 5bits 5 bits 5 bits 6 bits
op rs rt rd shamt funct

MIPS: Instruction Format (Contd.)

= |-format:; For data transfer instructions

= Examples: load word (lw) and store word (sw)

= One register operand and one memory address operand (specified
by a constant and a register)

lw $t0, 40($s2) # load Mem[$s2+40] to $t0
$t0i/register is_register 18.

100011 | 10010 | 01000 0000000000101000
I-format
6 bits 5 bits 5 bits 16 bits

op rs rt 16-bit immed/address

10

MIPS: Instruction Format (Contd.)

= J-format: For jJump instructions

: J Label # next instr. at Label
= Formats:
J-format op 26-bit address

= Jump Instructions just use high-order bits of PC
= Address = bits 31-28 of PC + shift_left_2 bits(26-bit address)
= Address boundaries of 256 MB.

Execution Time of a Program - Factors

Instruction Count

= Determined by compiler and ISA
Clock cycle time

= Determined by the architecture/implementation of the ISA
Number of Clock Cycles per Instruction (CPI)

= Determined by the architecture/implementation of the ISA

We will now look at different possible implementation
possibilities

12

The Processor. Datapath & Control

Implementation of the MIPS ISA
Simplified to contain only:

= memory-reference instructions: Ilw, sw
= arithmetic-logical instructions: add, sub, and, or, sit
= control flow instructions: beq, j

Generic Implementation:
= use the program counter (PC) to supply instruction address
= get the instruction from memory
= read registers
= use the instruction to decide exactly what to do

All instructions use the ALU after reading the registers
Why?

= memory-reference?
= arithmetic?
= control flow?

13

Building Blocks

Different functional units we need for each instruction

»| Instruction
address

Instruction
memory

Instruction >

-

numbers

5
=
i 5
Register P
5
Avb

N

> Data

Data {—>

Read
register 1 Read
Read datal
register 2

Registers
Write
register Read
Write data 2
data

RegWtite

>Add Sum

ALU control
3
—)

Zerol—p

result

1T

ALU AU,

, MemWrite
Address Read
data
Write Data
data memory
MemRead

Sign
extend

14

Incrementing the Program Counter (PC)

>Add

4~

Read
address

Instruction >

Instruction
memory

= Fetching instructions and incrementing the PC

Datapath for R-type Instructions

-5 ALU control
3 Read
register 1 ~N
Read . .
Register _ Q| Read data 1
numbers register 2
. Registers > Data
x| Write result
register
~ Read : :
Write data 2 y
Data < > data
RegWrite
31 26 21 16 11 6 0
R-type op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

16

Datapath for R-type Instructions (Contd.)

rs

Instruction

Read
register 1 Read
Read data 1
register 2

Registers
Write
register Read

Write
data

data 2

31

26

21

16

11

6

Zero

ALU ALU
result

R-type op

I'S

It

rd

shamt

funct

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

17

Datapath for Load/Store Instructions

Instruction

3 ALU operation
Read
register 1 Read - ‘ MemWrite
Read data 1
register 2 Zero—»
. Registers ALU ALy
Write result —>| Address Read
register Read data
. data 2 e /
| Write
" | data Data
- Write memory
RegWrite * data
16) 32 1
N\, | Sign MemRead
N | extend
31 26 21 16 0
op rs rt immediate
6 bits 5 bits 5 bits 16 bits

18

Datapath for Load Instructions

ALU operation
'S [Read 3 P
register 1 R ‘ VemWrite
o ———— |
Read data 1
Instruction register 2
. Registers
er_tet result Address %Z?g
register Read
: data 2
\é\é([l;e Data
memory

RegWrite| | Write

16

MemRead

extend

31 26 21 16 0

op rs rt immediate
6 bits 5 bits 5 bits 16 bits

19

Datapath for Store Instructions

rs Read 3 ALU operation
register 1 Read MemWrite
—_—
R ead data 1
Instruction register 2
. Registers
Write result Address I?jead
register Read ata
; data 2
_| Write
| data Data
- Write memory
Regerte| > data
. . 16 1
lmmedla‘re Sign MemRead
extend
31 26 21 16 0
op rs rt immediate
6 bits 5 bits 5 bits 16 bits

20

Datapath for Branch Instructions

PC + 4 from instruction datapath ==

Instruction ‘

i

> Add Sum

>ALU Zero

32

Read
register 1 Read
Read data 1
register 2
Registers

Write
register Read
Write data 2
data

16 _

\ [Sign

—

extend

Branch target

To branch
control logic

The ALU is used to evaluate the branch condition and a separate adder
IS used to compute the branch target address as the sum of the
Incremented PC and the sign-extended lower 16 bits of the instruction
shifted left by 2 bits

21

Memory & R-type Instructions: Combined Datapath

Read =
. "| register 1 Read | MemWrite
Read ALU operation Read data 1
> - : — ister 2 Zerof—
register 1 Read R Instruction | regis e:?egisters >ALU ALU
_| Read data 1 o] Write result Address %:?g
Instruction register 2 o e /
— Registers . data 2
. Write
> erpet result data _| mer:gr
register Read s - Write y
) data 2 RegWrite * data
Write
data 16 32
\ Sign ‘ MemRead
' RegWrite N | extend
Read
register 1 Read
Read data 1 -
Instruction register 2 1o
—— iy F{eg|5ter5 Read F'I.Ll_l ALL Read
b | Write: data 2 result Address data ™™
register M M
. u u
. L"‘g{;e | * Data X
" . memor
Write i
data
16)
% Sign
v lextend

22

Using the Multiplexor

ALU operation
Read
register 1 Read MemWrite
Read data 1 - MemtoReq
Instruction register 2 ALUSrc
~ Registers Read
| Write data 2 Address Read |,
register data
M
. u
. E.g&le Data b
: memory
RegWrite ET';[,':ZE
16 _
A Sign

v extend MemRead

Adding “Instruction Fetch”

4

PG| Read
address

Instruction

Instruction
memory

= The Instruction Fetch portion of the datapath has now been

Read
register 1

Read
register 2
Write
register

Write
data

Registers

Read

data 1
Read

1

xXCc

data 2 ‘ M

\
> extend

Address Read
data

Data

_| Write memory

data

xc

added to the previous datapath

24

Simple Datapath for the MIPS Architecture

= Finally, adding the datapath for branch instructions

2y

- PC

Read
address

Instruction

Instruction
memory

PCSr
| M
u
X
A
>Addre31|]It
»
Reqisters .
Read ’ ALUS 3| ALU operation | MemWrite
i rc
register 1 Read | ‘
Read data 1 MemtoReg
register 2
Write Read > Address Read N
register data 2 M datal v
- \(g\zlarti;e X Data X
: | Write memory
Regertel | data
16 . 32
[Sign
™ extend MemRead

25

Simple Control Structure

= All of the logic is combinational

= Walit for everything to settle down, and the right thing to
be done

= ALU might not produce “right answer” right away

= Use write signals along with clock to determine when
to write

= Cycle time determined by length of the longest path

State State
element Combinational logic element
1 2

Clock cycle —-

26

Control: Two-level implementation

instruction register

bit
31

o))

Opcode

26

2
ALUop

y

Funct.

00: Iw, sw
01: beq
10: add, sub, and, or, slt

3

ALUcontrol 000: and
001: or
010: add
110: sub
111: set on less than

>ALU

27

Designing Control 1

instruction register

bit
31

o))

Opcode

26

Assume that Control 2 generates the 2-bit
ALUop based on the opcode. Now, using this
2-bit ALUop and the function field of the
instruction, Control 1 generates the 3-bit

control signal ALUcontrol.
2

ALUop

y

Funct.

00: Iw, sw
01: beq
10: add, sub, and, or, slt

3

ALUcontrol 000: and
001: or
010: add
110: sub
111: set on less than

>ALU

—

ALUcontrol will determine the function
that the ALU will perform (ADD, OR, etc.)

28

Deriving Control2 signals

Input 9 control (output) signals
Memto-| Reg |Mem |Mem
Instruction |[RegDst|ALUSIc| Reg [Write|Read |Write |[Branch |ALUOp1|ALUpQ
R-format 1 0 0 1 0 0 0 1 0
Iw 0 1 1 1 1 0 0 0 0
Sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Determine these control signals directly from the opcodes:

R-format:
w:

SW:

beq:

0
35
43

4

29

Similarly for the Other Instructions

= For each opcode, find the values of the control signals
= Construct the truth table
= Determine the logic that implements this truth table

Memto-| Reg |Mem |Mem
Instruction |RegDst|ALUSrc| Reg [Write|Read |Write|Branch|ALUOp1|ALUpO
R-format 1 0 0 1 0 0 0 1 0
Iw 0 1 1 1 1 0 0 0 0
Sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

30

Where we are headed?

= Single Cycle Problems:
= what if we had a more complicated instruction like floating point?

= wasteful of area: NO Sharing of Hardware resources

= One Solution:

= use a “smaller” cycle time
= have different instructions take different numbers of cycles
= a“multicycle” datapath:

\ L Address

Memory

Instruction
or data

o

Ié Data

Instruction
register

IR

e

Memory
data
register

—-—

MDR

» Data

Register #
Registers
Register #

Register #

ALUOu+

31

Why single cycle implementation is not used?

Assume the following access times: Memory (2ns), ALU &
adders (2ns), reg. file access (1ns)

Fixed length clock: longest instruction is the ‘lw” which
requires 8 ns

= |Load uses five functional units: instruction memory,
register file, ALU, data memory, register file once again

= Hence, clock cycle is 8ns

Clock cycle is determined by the longest path in the machine
(Iw In this case)

However, several other instructions could fit into a shorter
clock cycle

32

Why single cycle implementation is not used?

R-type: Instruction fetch, Reg access, ALU, Reg access

Load: Instruction fetch, Reg access, ALU, Mem access, Reg
access

Store: Instruction fetch, Reg access, ALU, Mem access
Branch: Instruction fetch, Reg access, ALU
Jump: Instruction fetch

Note the difference between Load and Jump. This difference
becomes even more significant of there are floating-point instructions.

33

Multicycle implementation: Basics

In the previous slide, the execution of each instruction was
broken into several steps

In a multicycle implementation, each such step executes in
1 clock cycle

Hence, different instructions require different number of
clock cycles

Advantages:
= More efficient

= A functional unit can be used more than once per
Instruction, as long as it is used in different clock cycles
(so less hardware is required)

But the design Is more complex

34

Single-Cycle versus Multicycle

= In a multicycle
architecture:
Det . .
B \ ,Reg:er# H{ A = Single memory unit for both
I . .
e SAL instruction and data
|‘ Regsier#t | = Single ALU, rather than one
ALU and two adders
Multicycle architecture = One or more registers added
PCSHi after each functional unit to
' l : hold the output of that unit,
>Add , iy : : i
Y until the value is used in the
4= >Add LY next clock cycle
" Single cycle architecture
| Read eosers 3| ALU operation ||\/Iem\/\/rite
| pC f=4s| Read register 1 Read ALLIJSrC‘
address Read data 1 MemtoReg
Instruction —E regster2
Wite Read > Add Readl,.
Instruction reglster data 2 M - ceta '\dl
memory - %e | SN ~ Daa X
Reg\itd | e
16 : 2
o> eigrrl]d I\/IemReaJ
35

Multicycle implementation: Additional Registers

= Instruction Register, Memory Data Register, Registers A
and B in front of the Reg file and ALUOut (reg in front of

the ALU)

= At the end of each clock cycle, the data to be used in
subsequent clock cycles is stored in a state element

= data to be used in subsequent instructions in a later
clock cycle is stored in a programmer-visible state
element like reg file, PC or memory

= data used by the same instruction in a later cycle is
stored in one of the additional registers

36

Multicycle implementation

= Each clock cycle can accommodate at most one of the
following operations:

= @ memory access
= aregister file access (two reads or one write)
= an ALU operation

= Hence, any data produced by one of the above three
functional units must be saved into a temporary register for
use in a later cycle

37

Multicycle implementation: Additional Registers

N
7

Instruction

register

Data
PC|—Y_¢| Address

v

Instruction

Memory

Register #
Registers >ALU ALUOut)

Memory Register # \
N data \ B \/
register ¢ Register # '

Data

All registers except the Instruction register (IR) hold data only between
a pair of adjacent clock cycles (and hence do not need a write control signal)

Multicycle implementation: Examples

Instruction _ | Read
Address [25-21] " | register 1
Instruction Read Read |
Memory [20— 16]] l > register 2 datal
MemData—gy—) _ 0 _ Registers ALUOu
Instruction M Write Read
Wit [15- O]} K instruction| u register gata 2 |
rite ; _ X
data Instruction [15-11] X Write
register data
Instruction
[15-0]
)1 Memory
data
register
@

ALU used to compute PC =PC +4

The same ALU is also used for R-type instructions, branch address
computation, computing memory address in the case of lw/sw instructions

39

Multicycle Approach: Summary

= Break up the instructions into steps, each step takes a cycle
= balance the amount of work to be done
= restrict each cycle to use only one major functional unit
= At the end of a cycle
= store values for use in later cycles (easiest thing to do)
= Introduce additional “internal’ registers

= Notice: we distinguish
= processor state: programmer visible registers

= Internal state: programmer invisible registers (like IR,
MDR, A, B, and ALUout)

40

Multicycle implementation: Steps

Instruction fetch common for
] _ all instructions
Instruction decode and register fetch

Execution, memory address computation or branch
completion

Memory access or R-type instruction completion
Memory read completion

INSTRUCTIONS TAKE FROM 3 -5 CYCLES!

41

Step 1: Instruction Fetch

Use PC to get instruction and put it in the Instruction Register
Increment the PC by 4 and put the result back in the PC

Can be described succinctly using RTL "Register-Transfer
Language”

IR
PC

Memory[PC];
PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

This step i1s common for all instructions (obviously!)

42

Step 2: Instruction Decode and Register Fetch

Read registers rs and rt in case we need them

= Compute the branch address in case the instruction is a branch
= Previous two actions are done optimistically (no harm is done)
= RTL:

A = Reg|[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC+(sign-extend(IR[15-0])<< 2);

= We aren't setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)

This step iIs also common for all instructions

43

Step 3 (instruction dependent)

ALU is performing one of four functions, based on instruction type
Memory Reference:
ALUOuUut = A + sign-extend(IR[15-0]);

R-type:
ALUOut = A op B;

Branch:
1T (A==B) PC = ALUOut;

Jump:

PC = PC[31-28] |l (IR[25-0]<<2)

Step 4 (R-type or memory-access)

= Loads and stores access memory

MDR = Memory[ALUOut];

or
Memory[ALUOut]

= R-type instructions finish

Reg[IR[15-111]

B;

ALUOUTL;

45

Step 5: Write-back step

= Memory read completion step

Reg[IR[20-16]]= MDR:

46

Summary of execution steps

Steps taken to execute any instruction class

Action for Rtype | Action for memory-reference Action for Action for
Step nhame Instructions Instructions branches [umps
Instruction fetch IR = Memory[PC]
PC=PC+4
Instruction A =Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOUt = PC + (sign-extend (IR[15-0]) << 2)

Execution, address ALUOut=AopB ALUOuUt = A + sign-extend if (A=B) then | PC=PC[31-28] I
computation, branch/ (IR[15-0]) PC = ALUOuUt (IR[25-0]<<2)
jump completion
Memory access or R-type | Reg[IR[15-11]] = | Load: MDR = Memory[ALUOUL]
completion ALUOut or

Store: Memory [ALUOUt] =B
Memory read completion Load: Reg[IR[20-16]] = MDR

47

Multicycle Control Unit

= We now need to determine the values of the control signals
for each of the Steps 1 -5

= The next few slides show how this is done for Step 1
= The procedure for the remaining steps Is similar

48

Step 1: Instruction Fetch Step

- PCWmeCond/\ PCSource
PCWr|te7

lorD I Outputs\ALUOp

= o
xcZ

ALUSICcB
MemRead
Memwrite| Control ALUSTCA
X MemtoReg RegWrite
L, IRWrite \ [5?')0] CRegDS‘
X N
Jump
Instruction [25—0] address [31-0]
Instruction
[31-26]
0 0
M Instruction Read M
u Address [25-21] | register 1 _l u
f Memor Instruction Read Read > A X
Y [20-16] p ™| register 2 datal B L =N
MemData —)p - . 0 W'tRegisters ALUOuU
nstruction M rite ad B
Wit [15-0If T instruction| u register gata 2 m
rite ; X .
> aia Instruction [15-11] ! Write 4|1 l\ljl
register data >l2 o
Instruction 0 3
[15-0] M
u
X
»| Memory >y 1
data S 16 Sign
register A Sep —
9 N\ "l extend
Instruction [5- 0]
&

MemRead=1 lorD=0 IR = Memory[PC];
IRWrite=1 PC = PC + 4;

N

Step 1: Instruction Fetch Step

PC

PCWriteCond/\ PCSource

= CF

PCWrite?
ALUO
lorD I Outputs\ P
ALUSrcB
MemRead
ALUSIcA
Memwrite| Control
MemtoReg RegWrite

IRWrite \ 5

Op RegDst
— 0]
\.

chzo

Address

Memory
MemData

Write
data

Instruction [25—0]

Instruction
[31-26]
Instruction Read
[25-21] | register 1
Instruction Read Read
[20-16] p ™| register 2 datal
) 0 _ Registers
Instruction M Write ad
[15-0If T instruction| u register gata 2
Instruction [15-11] 1X Write
register data
Instruction 0
[15-0] M
u
X
»| Memory >y 1
data S 16 sign
register # N
9 N\ "l extend
Instruction [5- 0]

Jump
address [31-0]

= o

ALUOu

Increment PC by 4: ALUSrcA=0; ALUSrcB=01;
ALUOp=00 (for ALU to ADD)

N

xcZ

IR
PC

= Memory[PC];

PC + 4;

50

Step 1: Instruction Fetch Step

/7_’_C—I PCWriteCond/\ PCSource
. -
X X PCwrite [\ALUOp

lorD I Outputs

ALUSIcB
MemRead
Memwrite| Control ALUSTCA
MemtoReg RegWrite
IRWrite \ [5?')0] CRegDS‘
\.
Instruction [25—0]
Instruction
[31-26]

PC 0 0
M Instruction Read M
u Address [25-21] " | register 1 _l u

.,f Memor Instruction Read Read » A X
Y [20-16] p ™| register 2 datal B L =N
Membata e Instruction N Writ§ egisters
M h ad B
Writ [15-0If T instruction| u register gata 2 m
rite ; X)
> aia Instruction [15-11] : Write 4 =p|1 '\ljl
register data o2 U
Instruction 0 3
[15-0] M
u
X
»| Memory >y 1
data S 16 Sign
register # Seb —
9 N\ "l extend
Instruction [5- 0]
&

Jump
address [31-0]

= o

ALUOu

Store incremented instruction address back to PC:
PCSource=00; PCWrite=1

N

xcZ

IR
PC

Memory|[PC];

PC + 4;

51

Steps 2-5

= Determining the values of the control signals for Steps 2 — 5
follows the same procedure

= The next stage is to design the control unit, which will
generate these control signals

52

Implementing the Control

= Value of control signals is dependent upon:
= what instruction is being executed
= which step is being performed

= Use the information we have accumulated (ex: control signals
for Step 1) to specify a finite state machine (FSM)

= specify the finite state machine graphically, or
= Use microprogramming

= Implementation can be derived from specification

53

FSM: high level view

Start/reset

|

Instruction fetch, decode and register fetch

Memory access R-type Branch
Instructions Instructions Instruction

Jump
Instruction

54

FSM implementation of the control unit

Instruction decode/
Register fetch

Instruction fetch

MemRead
ALUSIcA=0
lorD=0

IRWrite ALUSIrcA=0
Start ALUSrcB = 01 ALUSrcB = 11
ALUOp =00 ALUOp =00

PCWrite

v
Memory reference FSM R-type FSM Branch FSM Jump FSM

55

FSM for memory reference instructions

From state 1
j (Op ="'LW") or (Op = 'SW")

Memory address computation

ALUSrcA=1
ALUSrcB =10
ALUOp =00

Memory

Memory

v access access
3

MemRead .

lorD = 1 MemWrite

lorD=1

v Write-back step

RegWrite To state 0

MemtoReg = 1
RegDst =0

N
»

56

FSMs for other instructions

From state 1
(Op = R-type)

Execution

From state 1
(Op = 'BEQ’)

ALUSrcA =1
ALUSrcB =00
ALUOp =10

ALUSrcA=1
ALUSrcB =00
ALUOp =01
PCWriteCond
PCSource =01

v R-type completior

RegDst=1
RegWrite
MemtoReg =0

To state O

Branch instruction
To state O

R-type instructions

Branch completion

From state 1
(Op ="J)

Jump completion

PCWrite
PCSource =10

To state O

Jump instruction

57

The Full FSM for the Control Unit

Instruction decode/
register fetch

<+ Instruction fetch

0 — —
|Mu L
- . - ALUSrcA=0
Obtained by simply joining the oD = 0 \ /ALUSrcA:o
- . . Start IRWrite » ALUSrcB=11
FSMs in the previous slides ALUSTCB = 01 ALUOP = 00
ALUOp = 00
PCWrite
- e) Y -~
RS &7((/0 >
M dd kOQ / Q// g—
emory address
compyutation (09c Branch G e[Jump
) of completion completion
(o) 8
ALUSrcA=1
ALUSIcA=1 = ALUSrcB = 00 ;
ALUSIcA =1
ALUSrcB = 10 ALUSICB = 00 ALUOp = 01 poae
ALUOp =00 ALUOp= 10 PCWriteCond N
PCSource = 01
P
< %
= N
= \S\LL
I ~)
& Memory Memory
~y__access access R-type completion
5 7
) RegDst =1
MemRead MemWrite RegWrite
lorD=1 lorD=1 MemtoReg =0

Write-back step

RegDst=0

RegWrite
MemtoReg=1

58

Finite State Machine for Control

—1 PCWrite
PCWriteCond

Implementation: emRead

MemW rite
IRW rite
MemtoReg
PCSource
ALUODP
Outputs ALUSrcB
ALUSTrcA
RegW rite
RegDst

Control logic

NS3
NS?2

NS1
Inputs NSO

< ™ N — o
Q o o o3
®) ®) O O O

Op5
p

S3

S

S

S

Instruction register State register

opcode field 7y T 7 1

59

Further Improvement

We saw that performance can be improved by using a
multicycle implementation, compared to a single cycle one

Most modern processors rely on further improvements by
exploiting instruction-level parallelism (ILP), where multiple
Instructions are evaluated in parallel

We will now briefly look at simple pipelining

In the following classes, we will review the basic concepts of
Superscalar and VLIW processors

60

Pipelining

Improve performance by increasing instruction throughput

Program
execution
order

(in instructions)

lw $1, 100($0)

Time

w $2, 200($0)

lw $3, 300($0)

Program
execution
order

(in instructions)

lw $1, 100($0)

Time

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18
T T T T T T T >
Instruction Data
fetch Reg ALU access Reg
< »|Instruction Data
Re ALU Re
8 ns fetch 9 access 9
< 2 > Instruction
ns fetch
<
8 ns
2 4 6 8 10 12 14
»
I I I I I i
Instruction Data
Re ALU Re
fetch 9 access g
<4—¥|nstruction Data
2 ns uet Reg ALU Reg
fetch access
<+«—¥||pstruction Data
2 ns Reg ALU Reg
fetch access

— PP P ¢———— P ¢—>

2 ns 2 ns

2 ns

2 ns

2ns

61

Pipelining

= ldeal speedup = number of stages

= Do we achieve this?

62

Pipelining

= What makes It easy
= all instructions are the same length
= just a few instruction formats
= memory operands appear only in loads and stores

= What makes it hard?
= structural hazards: suppose we had only one memory
= control hazards: need to worry about branch instructions
= (data hazards: an instruction depends on a previous instruction

63

Basic Idea

What do we need to add to actually split the datapath into stages?

IF: Instruction fetch ID: Instruction decode/ EX: Execute/ MEM: Memory access| WB: Write back
register file read address calculation

Add \
Add
Add result
Shift
left 2

Read
PC Address register 1 Read \
datal "
| Read
Instruction regiSterR%agisters ALU 2
. Read ALU
Wiite data 2 0 resit Address Féeatg 1
Instrdction register I\ljl a M
merpory Write X memo .
| data 1 ry Ox

Wtite
[\ data
16 . 32
| \S'gn/ |

Pipelined Datapath

Can you find a problem even if there are no

dependencies? What instructions can we execute
to manifest the problem?

IFID ID/EX EXIVEM "
Add \
—> Add R
! Add result g
Shift
left 2
5 R Read
» Address > register 1 Read| \
> » »
= | Read datal
Instruction = | register 2 Zero Ly
mefo — _ Registers Regd| AU ALy
register M i L
Wi x / Data u
ite X
mernno
"| data |1 rrory (;(
N | Wite
" "| data
6 |\
\ | Sion
\ T lextend

128 97 64

65

W

Iw

Instruction fetch

IFID ID/EX EX/IMEM MEM/WB
4 ey
H Read
Address 3 register 1 Read|
= R data 1
2 ead 2 Zero >
i = register
In"s::;::(i)lon t=>| — Registers Read ALU Alu
24 Write data 2 0 result Address Read | 1
register M data M
Wi u Data u
rite X
data i memory 0><
Write
data
16
Sign
extend
| Iw |
| Instruction decode |
IFID ID/EX EX/IMEM MEM/WB
s Read
Address 2 register 1 Read
E data 1
E Read B .,
i £ register
Instruction L, " Registers Read
memory Write data 2 Address Read | 1
register data M
Wit Data u
rite
data memory 8(
Write
data

16 . 32
N Sign |\

N lextend [Y

66

L/

PC

Read
data

MEM/WB

0
M Execution
X
1
IF/ID ID/EX EX/MEM
>Add
— Add
‘ >Add result
Shift
left 2
c Read
Address 2 register 1 Read ‘\
p=} » >
= Read data 1 ‘
Instruction 1= register 2. > —>
memo > ~ Registers Read
v Write data 2 4 result Address
register M
Writ d Data
rite X
data q memory
Write
v data
16 . 3
\ Sign |\
N Tlextend [M

Oxcgl—‘

67

Iw

0
M Memory
u
X
1
%—'F/IE D/E. EX/MEM:
Add
4
S Read
PC Address 2 register 1 Read
= Read data 1
B o 2 Zero —
Instruction = register 2
memory ™ _ Registers Read 5 ALU ALU Read
Write data 2 result Address — 7
register M data M
u
Write X memory g
data 1 K
Write
data
16 .
Sign
extend
\ Iw
M
u .
X Write back!
1
IFID ID/EX EX/MEM MEM/WB
5 Read
Address 5 register 1 Read
= data 1
g Read Zero >
Instruction = register 2
memory ™ . Registers Read| |) ALU ALyl -
Write data 2 result Address ead | 1
register M Data data M
u
i memory u
Write X
data 1 Ox
Write
data
Sign
extend

68

SW

Read
data

MEM/WB

| SW |
O -
M | Execution |
u
X
1
IF/ID ID/EX EX/MEM
>Add
Add
4 >Add result
Shift
left 2
5 Read
Address 2 register 1 Read
>
= Read data 1 N
Instruction = register 2 >
memo > ~ Registers Read
Y Write data 2 Y result Address
register M Daia
u
Write X memory
data —! 1
Write
g data
16) 32
\ Sign |\
N Clextend [M

Oxczb—‘

69

I Sw I

0
M ! Memory |
u
X
1
IF/ID ID/EX EX/MEM MEM/WB
[—]
Add
Add
4 Add ot
Shift
left 2
S Read
PCp==>| Address E register 1 Read
2 Read data 1
Instruction g Teeg?SIE‘f 2 Zero —
memor ™ . Registers Read ALU ALU
Y Write data2 [| 0 result Address Read| 1
register M data M
wii u Data u
rite X memo
data 1 b Ox
Write
data
16)
Sign
extend
0 | sw
M -
" | Write back
X
1
IF/ID ID/EX EX/MEM MEM/WB
Add
4
S Read
Address 1 register 1
g 9 Read
E Read data 1
i >
Instruction = register 2 Zero
> — _ Registers Read 0 ALU ALy
memory Write data 2 result Address Read| | 1
register M data
u Data lr
Write X memory x
data 1 .
Write
data
16) 32
Sign
extend

Corrected Datapath (Iw)

P xc=Z O)

IFID ID/IEX EX'MEM
> Add » » .
» Add
* | >Add result
Shift
left 2
c ~|Read
© register 1
—p Address s g d Read |
Instruction = | register 2 ro L
memo =~ Registers Read 5 U AU
Y \ite data?2 " result = » [-g—pAddress Read __
register M Jravm
u Data
| Write X eIy
data L
_ Wtite
Hata
16 [
\ Sign ,
N Tlextend

MEMWB

71

Datapath used in all the five stages of Iw

A
\){/ (Ep—
o
o

MEM/WB

IF/ID ID/EX EX/MEM
— \
‘ / Add resut >
Shift
left 2
c Read
Address -% register 1 Read \
= ld »
s .| Read datal S ‘ R
Instruction = register 2 >
~ Registers Read ALU ALU
" P data 2 0 result Address
register M
- Data
Write X s
data 1
Write
i’ data

16) 32
\ Sign | \

N Tlextend [N

Read

data

OxecZthk

72

Graphically Representing Pipelines

Time (indock cydes) >

Pragam oC1 oC2 oC3 oc4 oCcs Cc6
execuion
order — — — —
(ininstructions)

w10, 20(51) |¢A [Reg AU DV Reg

sub$11, 2, $3 IM Reg > AL DM Reg
\ / |

= Can help with answering questions like:
= how many cycles does it take to execute this code?
= what is the ALU doing during cycle 4?

= use this representation to help understand datapaths
73

Pipeline Control

PCSrc
‘ o
M
u
X
|
IF/ID ID/EX EXIMEM MEM/WB
Add ,\‘
Add
4 = Add result
Branch
Shift
RegWrite left 2
5 Read MemWrite
> Address B register 1 Read[__, ,\ I
>
= data 1)
' 2 »| Read ALUSIC Zero N MemtoReg
Instruction N — reglsteEZegisters Read ALU ALU
. ea
memory Write dataz | result »| Address Read|—! |—f]
register data M
. Data
| Write memo u
data b ry (;(
Write
data
Instruction T
16 .
[15-0] \ Sign 3(2 \6 ALU !
N\ lextend | N N\ 7| control MemRead
Instruction
[20-16] /O\
. M [ALUOp
Instruction u
[15-11] X
L L) L ||
RegDst

74

Pipeline control

= We have 5 stages. What needs to be controlled in each
stage?
= Instruction Fetch and PC Increment
= Instruction Decode / Register Fetch
= Execution
= Memory Stage
= Write Back

= How would control be handled in an automobile plant?
= a fancy control center telling everyone what to do?
= should we use a finite state machine?

75

Pipeline Control

Pass control signals along just like the data

No control signals for IF and ID, but only for the remaining three stages

Execution/Address Calculation| Memory access stage | stage control
stage control lines control lines lines
Reg | ALU | ALU | ALU Mem | Mem | Reg |Memto
Instruction | Dst Opl | Op0 | Src |Branch| Read | Wite | write | Reg
R-format 1 1 0 0 0 0 0 1 0
Iw 0 0 0 1 0 1 0 1 1
Sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X
Instructio_n>
IF/ID ID/EX EX/IMEM MEM/WB

76

Datapath with Control

PCSrc
—{0 |D/_EX
M
x e EX/MEM
Cs M
Control M WB I_NlEMNVB
IF/ID EX M WB
> Add — \
g Add
) 2 >Add result
% Shift Branch
& left 2 2
ALUSrc §
S ¢—| Read E -
PC - Address g register 1 Read g g
= e
5 e 2 . Zero > b o
Instruction = register 2 > g
memory] _ Registers Read NG >ALU ALU e
Write data 2 result > » Address eadi_pl (1
register M Data data "
u
. u
—| Write X memory X
data —|1 ;
> »| Write
data
Instruction
16 32 6
[15-0] N Sign |\ \
MemRead
\ lextend [X
Instruction
[20- 16]
0
M
Instruction u
[15-11] lx

RegDst

77

Hazards

Hazards: problems due to pipelining

Hazard types:
Structural
= same resource Is needed multiple times in the same cycle
Data
= data dependencies limit pipelining
Control

= next executed Instruction Is not the next specified
Instruction

78

Structural hazards

Examples:
Two accesses to a single ported memory

Two operations need the same function unit
at the same time

Two operations need the same function unit
In successive cycles, but the unit is not pipelined

Solutions:
stalling
add more hardware

79

Structural hazards on MIPS

Do we have structural hazards on our simple MIPS pipeline?

Instruction stream

— time

IF ID | EX |MEM| WB
IF ID | EX |MEM| WB
IF ID | EX |MEM| WB
IF ID | EX |MEM| WB
IF ID | EX |MEM| WB

80

Data hazards

= Data dependencies:
= RaW (read-after-write)
= WaW (write-after-write)
= WaR (write-after-read)
= Hardware solution:
= Forwarding / Bypassing
= Detection logic
= Stalling
= Software solution: Scheduling

81

Control hazards

= Control operations may change the sequential flow of
Instructions

= pranch

= jump

call (Jump and link)
return

exception

Memories: Review

SRAM:

= value is stored on a pair of inverting gates

= very fast but takes up more space than DRAM (4 to 6 transistors)
= access time: 5-25 ns

= Cost (US$) per MByte in 1997: 100 to 250

DRAM:
= value Is stored as a charge on capacitor (must be refreshed)
= very small but slower than SRAM (factor of 5 to 10)
= access time: 60-120 ns
= Cost (US$) per MByte in 1997: 5to 10

83

Memory Hierarchy: why?

Users want large and fast memories!

SRAM access times are 2 - 25ns at cost of $100 to $250 per Mbyte.

DRAM access times are 60-120ns at cost of $5 to $10 per Mbyte.
Disk access times are 10 to 20 million ns at cost of $.10 to $.20 per

Mbyte.

CPU

Try and give it to them anyway
= build a memory hierarchy

Level 1

/ Level 2

|

Qeed

/ Le\;el n

N

Size

84

Memory Hierarchy: requirements

= |f level is closer to Processor, it must...
= Be smaller
= Be faster

= Contain a subset (most recently used data) of lower levels
beneath it

= Contain all the data in higher levels above it

= Lowest Level (usually disk or the main memory) contains all the
available data

85

Locality

= A principle that makes having a memory hierarchy a good
Idea

= |f an item is referenced,

= temporal locality: it will tend to be referenced again soon
= gspatial locality : nearby items will tend to be referenced soon.

= Qur initial focus: two levels (upper, lower)
= block: minimum unit of data
= hit: data requested is in the upper level
= miss: data requested is not in the upper level

86

Cache

= TwO ISSUes:
= How do we know if a data item is in the cache?
= [fitis, how do we find it?

= Qur first example:
= Dblock size is one word of data
= "direct mapped"

\

For each item of data at the lower level,
there is exactly one location in the cache where it might be.

e.g., lots of items at the lower level share locations in the upper level

87

Direct Mapped Cache

Memory Cache 4 ByteDirect
Address Memory Index __Mapped Cache
0
2
3

= Cache Location 0 can be occupied by data from:
= Memory location 0, 4, 8, ...

= In general: any memory location that is
multiple of 4

TMUOWD>OONOUTRWNRO

88

Direct Mapped Cache

= Mapping: address is modulo the number of blocks in the
cache

Cache
O 1 O 10 +d O -
OO0 A 410 0O
OO OO0 A
P} \\
N
TN TR
\ .

00001 00101 01001 01101 10001 10101 11001 11101

Memory

89

Issues with Direct Mapped Caches

Since multiple memory addresses map to same cache index,
how do we tell which one is in there?

What if we have a block size > 1 byte?
= Solution: divide memory address into three fields

tag Index byte
to check to offset
If have select within

correct block block block

90

Check If we have the correct block

Cache

000
001
010
011
100
101
110
111

/

00001

00101 0“251 01101 10001 10101 11001 11101

00001 01001

Memory

Direct Mapped Caches: Terminology

All fields are read as unsigned integers.

Index: specifies the cache index (which “row” of the cache
we should look in)

Offset: once we’ve found correct block, specifies which byte
within the block we want

Tag: the remaining bits after offset and index are determined;
these are used to distinguish between all the memory
addresses that map to the same location

tag Index byte
to check to offset
If have select within

correct block block block

92

Direct Mapped Cache

Address (bit positions)
313021312 11 ..2 10
Byte
offset
. 4 20 J 10
Hit N Data
A Tag B 4
" FOF MIPS Index
Index Valid Tag Data
0
1
2
>e 'Y
1021
1022
1023
N \20 .32

93

Direct Mapped Cache

= Taking advantage of spatial locality:
Address (bit positions)

31...16 15--43210

Hit
r 3

16 12 2 Byte
N N N
Tag N ™ > offset
Index Block offset
‘16 bits‘) 128 bits -
v Tag A Data g
A
4K
entries
v
\\16 \\32 \\32 \\32 \\32
(=
RN l\
Mux
(Mux)
d32

Data

94

Hits vs. Misses

Read hits
= this is what we want!

Read misses

= stall the CPU, fetch block from memory, deliver to cache, restart the
load instruction

Write hits:
= can replace data in cache and memory (write-through)
= write the data only into the cache (write-back the cache later)

Write misses:

= read the entire block into the cache, then write the word (allocate on
write miss)

= do not read the cache line; just write to memory (no allocate on write
miss)

95

Improving performance

= Two ways of improving performance:

= decreasing the miss ratio: associativity
= decreasing the miss penalty: multilevel caches

96

Decreasing miss ratio with associativity

(direct mapped)
Block Tag Data

0 -

1 Two-way set associative

5 Set Tag Data Tag Data

3 0

4 1 2 blocks / set
5 2 —

6 3) block

v
7
Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data

0

1 4 blocks / set

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

8 blocks / set
97

Block replacement policy

In a direct mapped cache, when a miss occurs, the requested
block can go only at one position.

In a set-associative cache, there can be multiple positions in a
set for storing each block. If all the positions are filled, which
block should be replaced?

Least Recently Used (LRU) Policy
Randomly choose a block and replace it

98

References

= Computer Organization and Design by Patterson and
Hennessy (for the basic topics that we discussed today)

= Computer Architecture — A Quantitative Approach by
Hennessy and Patterson, Chapters 3, 4 and 5 (for Superscalar
and VLIW processors and memory hierarchy design)

= Virtual Machines by Smith and Nair, Appendix A (Real
Machines) for overview of Computer Architecture and OS

99

Next Class

Some System ISA issues (especially memory management)
Overview of PowerPC ISA

Overview of Intel IA-32 ISA

Implementation of Process VMs using interpretation

100

	CS6270: Virtual Machines
	Last Week’s Class: VM Taxonomy
	Today: Review of Background Material
	Computer System Hardware – Major Components
	Basics of Processors
	MIPS Operands: Registers and Memory
	MIPS: Addressing Modes
	MIPS: Instruction Format
	MIPS: Instruction Format (Contd.)
	MIPS: Instruction Format (Contd.)
	MIPS: Instruction Format (Contd.)
	Execution Time of a Program - Factors
	The Processor: Datapath & Control
	Building Blocks
	Incrementing the Program Counter (PC)
	Datapath for R-type Instructions
	Datapath for R-type Instructions (Contd.)
	Datapath for Load/Store Instructions
	Datapath for Load Instructions
	Datapath for Store Instructions
	Datapath for Branch Instructions
	Memory & R-type Instructions: Combined Datapath
	Using the Multiplexor
	Adding “Instruction Fetch”
	Simple Datapath for the MIPS Architecture
	Simple Control Structure
	Control: Two-level implementation
	Designing Control 1
	Deriving Control2 signals
	Similarly for the Other Instructions
	Where we are headed?
	Why single cycle implementation is not used?
	Why single cycle implementation is not used?
	Multicycle implementation: Basics
	Single-Cycle versus Multicycle
	Multicycle implementation: Additional Registers
	Multicycle implementation
	Multicycle implementation: Additional Registers
	Multicycle implementation: Examples
	Multicycle Approach: Summary
	Multicycle implementation: Steps
	Step 1: Instruction Fetch
	Step 2: Instruction Decode and Register Fetch
	Step 3 (instruction dependent)
	Step 4 (R-type or memory-access)
	Step 5: Write-back step
	Summary of execution steps
	Slide Number 48
	Step 1: Instruction Fetch Step
	Step 1: Instruction Fetch Step
	Step 1: Instruction Fetch Step
	Slide Number 52
	Implementing the Control
	FSM: high level view
	FSM implementation of the control unit
	FSM for memory reference instructions
	FSMs for other instructions
	The Full FSM for the Control Unit
	Finite State Machine for Control
	Further Improvement
	Pipelining
	Pipelining
	Pipelining
	Basic Idea
	Pipelined Datapath
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Corrected Datapath (lw)
	Slide Number 72
	Graphically Representing Pipelines
	Pipeline Control
	Pipeline control
	Pipeline Control
	Datapath with Control
	Hazards
	Structural hazards
	Structural hazards on MIPS
	Data hazards
	Control hazards
	Memories: Review
	Memory Hierarchy: why?
	Memory Hierarchy: requirements
	Locality
	Cache
	Direct Mapped Cache
	Direct Mapped Cache
	Issues with Direct Mapped Caches
	Check if we have the correct block
	Direct Mapped Caches: Terminology
	Direct Mapped Cache
	Direct Mapped Cache
	Hits vs. Misses
	Improving performance
	Decreasing miss ratio with associativity
	Block replacement policy
	References
	Next Class

